

PDSF NERSC's Production Linux Cluster

Craig E. Tull
HCG/NERSC/LBNL
MRC Workshop
LBNL - March 26, 2002

Outline

- People: Shane Canon (Lead), Cary Whitney, Tom Langley, Iwona Sakredja (Support) (Tom Davis, Tina Declerk, John Milford, others)
- Present
 - —What is PDSF?
 - —Scale, HW & SW Architecture, Business & Service Models, Science Projects
- Past
 - —Where did PDSF come from?
 - —Origins, Design, Funding Agreement
- Future
 - —How does PDSF relate to the MRC initiative?

PDSF - Production Cluster

- PDSF Parallel Distributed Systems Facility
 - —HENP community
 - Specialized needs/Specialized requirements
- Our mission is to provide the most effective distributed computer cluster possible that is suitable for experimental HENP applications.
- Architecture tuned for "embarrassingly parallel" applications
- AFS access, and access to HPSS for mass storage
- High speed (Gigabit Ethernet) access to HPSS system and to Internet Gateway
- http://pdsf.nersc.gov/

PDSF Photo

PDSF Overview

Component HW Architecture

- By minimizing diversity within the system, we maximize uptime and minimize sys-admin overhead.
- Buying Computers by the Slice (Plant & Prune)
 - —Buy large, homogeneous batches of HW.
 - —Each large purchase of HW can be managed as a "single unit" composed of interchangable parts.
 - —Each slice has limited lifespan NO MAINT. \$
- Critical vs. non-Critical Resources
 - —Non-critical compute nodes can fail without stopping analysis.
 - —Critical data vaults can be trivially interchanged (with transfer of disks) with compute nodes.
- Uniform environment means that software & security problems can be solved by "Reformat & Reload".

ERSC HW Arch.: 4 types of Nodes

- Interactive
 - —8 Intel Linux (RedHat 6.2)
 - —More memory, Fast, interactive logon, serve batch jobs when idle
- Batch (Normal & High Bandwidth)
 - -~400 Intel Linux CPUs (RedHat 6.2)
 - -LSF: Short, Medium, Long, & Custom Queues
- Data Vault
 - —Large Shared (NFS) Disk Arrays 25 TB
 - —High Network (GigE) Connectivity to compute nodes & HPSS, Data-Transfer Jobs Only
- Administrative
 - —Home diskspace server, AFS servers, License servers, Database servers, time servers, etc.

PDSF Global SW

- All SW necessary to HENP data analysis & simulation is available and maintained at current revs
- Solaris Software
 - —AFS, CERN libs, CVS, Modules, Objectivity, Omnibroker, Orbix, HPSS pFTP, ssh, LSF, PVM, Framereader, Sun Workshop Suite, Sun's Java Dev. Toolkit, Veritas, Python, etc.
- Linux Software
 - —AFS, CERN libs, CVS, Modules, Omnibroker, ssh, egcs, KAI C++, Portland Group F77/F90/HPF/C/C++, LSF, HPSS pFTP, Objectivity, ROOT, Python, etc.
- Specialized Software (Experiment Maintained)
 - —ATLAS, CDF, D0, DPSS, E895, STAR, etc.

Experiment/Project SW

- Principal: Allow diverse groups/projects to operate on all nodes without interfering with others.
- Modules:
 - —Allows individuals/groups to chose appropriate SW versions at login (Version migration dictated by experiment, not system.).
- Site independence:
 - —PDSF personnel have been very active in helping "portify" code (STAR, ATLAS, CDF, ALICE).
 - Direct benefit to project Regional Centers & institutions.
- Specific kernel/libc dependency of project SW is only case where interference is an issue (None now.).
- LSF extensible to allow incompatible differences.

Batch Queuing System

- LSF 4.x Load Sharing Facility
 - —Solaris & Linux
 - —Tremendous leverage from NERSC (158 "free", aggressive license negotiations ▷ price savings)
 - Very good user & admin experiences
 - —Fair share policy in use
 - —Can easily sustain >95% load.

Administrative SW/Tools

- Monitoring tools Batch usage, node & disk health, etc.
 - —developed at PDSF to insure smooth operation & assure contributing clients
- HW tracking & location (mySQL + ZOPE)
 - -800 drives, ~300 boxes, HW failures/repairs, etc.
 - —developed at PDSF out of absolute necessity
- System & Package consistency
 - —developed at PDSF
- System installation
 - —kickstart ~3 min.s/node
- System Security No Known Security Breaches
 - —TCP Wrappers & ipchains, NERSC Monitoring, no clear-text passwords, security patches, crack, etc.

PDSF Business Model

- Users contribute directly to cluster through hardware purchases. The size of the contribution determines the fraction of resources that are guaranteed.
- NERSC provides facilities and administrative resources (up to pre-agreed limit).
- User share of resource guaranteed at 100% for 2 years (warranty), then depreciates 25% per year (hardware lifespan).
- PDSF scale has reached the point where some FTE resources must be funded.
 - -#Admins Ü Size of System (eg. box count)
 - —#Support Ü Size of User Community (eg. #groups & #users & diversity)

PDSF Service Model

- Less than 24/7, but more than Best Effort.
- Support (1 FTE):
 - —USG supported web-based trouble tickets.
 - —Response during business hours.
 - —Performance matrix.
 - —Huge load right now Ü Active, Large community
- Admin (3 FTE):
 - —NERSC operations monitoring (24/7)
 - —Critical vs. non-critical resources
 - —Non-critical: (eg. batch nodes) Best effort
 - —Critical: (eg. servers, DVs) Fastest response

History of PDSF Hardware

- Arrived from SSC (RIP), May 1997
- October '97 "Free" HW from SSC
 - 32 SUN Sparc 10, 32 HP 735
 - 2 SGI data vaults
- 1998 NERSC seeding & initial NSD updates
 - added 12 Intel (E895), SUN E450, 8 dual-cpu Intel (NSD/STAR), 16
 Intel (NERSC), 500 GB network disk (NERSC)
 - subtracted SUN, HP, 160 GB SGI data vaults
- 1999 Present Full Plant & Prune
 - HENP Contributions: STAR, E871, SNO, ATLAS, CDF, E891, others
- March 2002
 - 240 Intel Compute Nodes (390 CPUs)
 - 8 Intel Interactive Nodes (dual 996MHz PIII, 2GB RAM, 55GB scratch)
 - 49 Data Vaults: 25 TB of shared disk
 - Totals: 570K MIPS, 35 TB disk

PDSF Growth

- Future
 - —Continued support of STAR & HENP
 - —Continue to seek out new groups
 - —Look for interest outside of HENP community
 - Primarily Serial workloads
 - Stress benefits of using a shared resource
 - Let scientist focus on science and system administrator run computer systems

PDSF Major/Active Users

- Collider Facilities
 - —STAR/RHIC Largest user
 - -CDF/FNAL
 - -ATLAS/CERN
 - **—E871/FNAL**
- Neutrino Experiments
 - —Sudbury Neutrino Observatory (SNO)
 - **—KamLAND**
- Astrophysics
 - —Deep Search
 - —Super Nova Factory
 - —Large Scale Structure
 - **—AMANDA**

Solenoidal Tracking At RHIC (STAR)

- Experiment at the RHIC accelerator in BNL
- Over 400 scientists and engineers from 33 institutions in 7 countries
- PDSF primarily intended to handle simulation workload
- PDSF has increasingly been used for general analysis

Sudbury Neutrino Observatory (SNO)

- Located in a mine in Ontario Canada
- Heavy water neutrino detector
- SNO has over 100 collaborators at 11 institutions

Results from SNO

- Recently confirmed results from Super-K that neutrinos have mass.
- PDSF specifically mentioned in results

Measurement of the rate of $\nu_e + d \rightarrow p + p + e^-$ interactions produced by ⁸B solar neutrinos at the Sudbury Neutrino Observatory

Q.R. Ahmad¹⁵, R.C. Allen¹¹, T.C. Andersen¹², J.D. Anglin⁷, G. Bühler¹¹, J.C. Barton^{13‡}, E.W. Beier¹⁴, M. Bercovitch⁷, J. Bigu⁴, S. Biller¹³, R.A. Black¹³, I. Blevis³, R.J. Boardman¹³, J. Boger², E. Bonvin⁹, M.G. Boulay⁹, M.G. Bowler¹³, T.J. Bowles⁶, S.J. Brice^{6,13}, M.C. Browne¹⁵, T.V. Bullard¹⁵, T.H. Burritt^{15,6} K. Cameron¹², J. Cameron¹³, Y.D. Chan⁵, M. Chen⁹, H.H. Chen^{11*}, X. Chen^{5,13}, M.C. Chon¹², B.T. Cleveland¹³, E.T.H. Clifford^{9,1}, J.H.M. Cowan⁴, D.F. Cowen¹⁴, G.A. Cox¹⁵, Y. Dai⁹, X. Dai¹³, F. Dalnoki-Veress³, W.F. Davidson⁷, P.J. Doe^{15,11,6}, G. Doucas¹³, M.R. Dragowsky^{6,5}, C.A. Duba¹⁵, F.A. Duncan⁹, J. Dunmore¹³, E.D. Earle^{9,1}, S.R. Elliott^{15,6}, H.C. Evans⁹, G.T. Ewan⁹, J. Farine³, H. Fergani¹³, A.P. Ferraris¹³, R.J. Ford⁹, M.M. Fowler⁶, K. Frame¹³, E.D. Frank¹⁴, W. Frati¹⁴, J.V. Germani^{15,6}, S. Gil¹⁰, A. Goldschmidt⁶, D.R. Grant³. R.L. Hahn², A.L. Hallin⁹, E.D. Hallman⁴, A. Hamer^{6,9}, A.A. Hamian¹⁵, R.U. Haq⁴, C.K. Hargrove³, P.J. Harvey⁹, R. Hazama¹⁵, R. Heaton⁹, K.M. Heeger¹⁵, W.J. Heintzelman¹⁴, J. Heise¹⁰, R.L. Helmer^{10†}, J.D. Hepburn^{9,1}, H. Heron¹³, J. Hewett⁴, A. Hime⁶, M. Howe¹⁵, J.G. Hykawy⁴, M.C.P. Isaac⁵, P. Jagam¹², N.A. Jelley¹³, C. Jillings⁹, G. Jonkmans^{4,1}, J. Karn¹², P.T. Keener¹⁴, K. Kirch⁶, J.R. Klein¹⁴, A.B. Knox¹³, R.J. Komar^{10,9}, R. Kouzes⁸, T. Kutter¹⁰, C.C.M. Kyba¹⁴, J. Law¹², I.T. Lawson¹², M. Lay¹³, H.W. Lee⁹, K.T. Lesko⁵, J.R. Leslie⁹, I. Levine³, W. Locke¹³, M.M. Lowry⁸, S. Luoma⁴, J. Lyon¹³, S. Majerus¹³, H.B. Mak⁹, A.D. Marino⁵, N. McCauley¹³, A.B. McDonald^{9,8}, D.S. McDonald¹⁴, K. McFarlane³, G. McGregor¹³, W. McLatchie⁹, R. Meijer Drees¹⁵, H. Mes³, C. Mifflin³, G.G. Miller⁶, G. Milton¹, B.A. Moffat⁹, M. Moorhead^{13,5}, C.W. Nally¹⁰, M.S. Neubauer¹⁴,

PDSF Job Matching

- Linux clusters are already playing a large role in HENP and Physics simulations and analysis.
- Beowulf systems may be in-expensive, but can require lots of time to administer
- Serial Jobs:
 - —Perfect match (up to ~2GB RAM+2GB SWAP)
- MPI Jobs:
 - —Some projects using MPI (Large Scale Structures, Deep Search).
 - —Not low latency, small messages
- "Real" MPP (eg. Myricom)
 - —Not currently possible. Could be done, but entails significant investment of time & money.
 - —LSF handles MPP jobs (already configured).

ow does PDSF relate to MRC?

- Emulation or Expansion ("Model vs. Real Machine")
 - —If job characteristics & resources match.
- Emulation:
 - —Adopt appropriate elements of HW & SW Arch.s, **Business & Service Models.**
 - —Steal appropriate tools.
 - —Customize to eg. non-PDSF like job load.
- Expansion:
 - —Directly contribute to PDSF resource.
 - —Pros:
 - Faster ramp-up, stable environment, try before bye, larger pool of resources (better utilization), leverage existing expertise/infrastructure
 - –Cons:
 - Not currently MPP tuned, ownership issues.